skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brown, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 6, 2026
  2. In the small town of Sitka, Alaska, frequent and often catastrophic landslides threaten residents. One challenge associated with disaster preparedness is access to timely and reliable risk information. As with many small but diverse towns, who or what is a trustworthy source of information is often contested. To help improve landslide communication in Sitka, we used a community-partnered approach to social network analysis to identify (1) potential key actors for landslide risk communication and (2) structural holes that may inhibit efficient and equitable communication. This short take describes how we built trust and developed adaptive data collection methods to build an approach that was acceptable and actionable for Sitka, Alaska. This approach could be useful to other researchers for conducting social network analysis to improve risk communication, particularly in rural and remote contexts. 
    more » « less
  3. Abstract The polymerization of 1,4‐benzenediboronic acid (BDBA) on mica to form a covalent organic framework (COF‐1) reveals a dramatic increase in crystallinity when physically confined by exfoliated graphene. COF‐1 domains formed under graphene confinement are highly geometric in shape and on the order of square micrometers in size, while outside of the exfoliated flakes, the COF‐1 does not exhibit long‐range mesoscale structural order, according to atomic force microscopy imaging. Micro‐Fourier transform infrared spectroscopy confirms the presence of COF‐1 both outside and underneath the exfoliated graphene flakes, and density functional theory calculations predict that higher mobility and self‐assembly are not causes of this higher degree of crystallinity for the confined COF‐1 domains. The most likely origin of the confined COF‐1's substantial increase in crystallinity is from enhanced dynamic covalent crystallization due to the water confined beneath the graphene flake. 
    more » « less